Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Front Public Health ; 12: 1370635, 2024.
Article in English | MEDLINE | ID: mdl-38655518

ABSTRACT

Background: The current rate of organ donation in China falls significantly below the global average and the actual demand. Nursing students play a crucial role in supporting and promoting social and public welfare activities. This study primary aims to analyze the levels of knowledge, attitudes, willingness toward organ donation, and attitudes toward death among nursing students, and investigate the mediating role of attitude in the relationship between knowledge and willingness. The secondary aims to identify factors that may influence the willingness. Methods: A convenience sample of nursing students completed online-administered questionnaires measuring the level of knowledge, attitudes, and willingness toward organ donation before and after clinical internship. Spearman correlation and mediation analyses were used for data analyses. Results: Before the clinical internship, there were 435 nursing students who had not yet obtained their degrees and were completing their clinical internships. After the internship, this number decreased to 323. The mean score for knowledge before and after the clinical internship (7.17 before and 7.22 after, with no significant difference), the attitude (4.58 before and 4.36 after, with significant difference), the willingness (12.41% before and 8.67% after, with significant difference), the Death Attitude Profile-Revised (DAP-R) score (94.41 before and 92.56 after, with significant difference). The knowledge indirectly affected nursing students' willingness to organ donation through attitude. Knowledge had a direct and positive impact on attitudes (ß = 1.564). Additionally, nursing students' attitudes positively affected their willingness (ß = 0.023). Attitudes played a mediating role in the relationship between knowledge and willingness (ß = 0.035). Additionally, attitude toward death, fear of death, and acceptance of the concept of escape were found to be correlated with their willingness. Conclusion: Organ donation willingness was found to be low among nursing students. Positive attitudes were identified as a mediating factor between knowledge and willingness. Additionally, DAP-R was a related factor. Therefore, it is recommended to focus on improving knowledge and attitude, as well as providing death education to help nursing students establish a positive attitude toward death. These efforts can contribute to the promotion of organ donation.


Subject(s)
Health Knowledge, Attitudes, Practice , Students, Nursing , Tissue and Organ Procurement , Humans , Students, Nursing/psychology , Female , Male , Surveys and Questionnaires , China , Adult , Young Adult , Attitude to Death , Attitude of Health Personnel
2.
Proteomics ; : e2300396, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38522031

ABSTRACT

The tooth serves as an exemplary model for developmental studies, encompassing epithelial-mesenchymal transition and cell differentiation. The essential factors and pathways identified in tooth development will help understand the natural development process and the malformations of mineralized tissues such as skeleton. The time-dependent proteomic changes were investigated through the proteomics of healthy human molars during embryonic stages, ranging from the cap-to-early bell stage. A comprehensive analysis revealed 713 differentially expressed proteins (DEPs) exhibiting five distinct temporal expression patterns. Through the application of weighted gene co-expression network analysis (WGCNA), 24 potential driver proteins of tooth development were screened, including CHID1, RAP1GDS1, HAPLN3, AKAP12, WLS, GSS, DDAH1, CLSTN1, AFM, RBP1, AGO1, SET, HMGB2, HMGB1, ANP32A, SPON1, FREM1, C8B, PRPS2, FCHO2, PPP1R12A, GPALPP1, U2AF2, and RCC2. Then, the proteomics and transcriptomics expression patterns of these proteins were further compared, complemented by single-cell RNA-sequencing (scRNA-seq). In summary, this study not only offers a wealth of information regarding the molecular intricacies of human embryonic epithelial and mesenchymal cell differentiation but also serves as an invaluable resource for future mechanistic inquiries into tooth development.

3.
J Phys Chem A ; 128(11): 1984-1992, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38446415

ABSTRACT

Excited-state intramolecular double proton transfer (ESIDPT) has received much attention because of its widespread existence in the life reactions of living organisms, and materials with this property are significant for their special luminescent properties. In this work, the complete active space self-consistent field (CASSCF) and OM2/multireference configuration interaction (OM2/MRCI) methods have been employed to study the static electronic structure calculations of the photochemistry and the possibility of ESIDPT process of hydroxyquinoline benzimidazole (HQB) molecule, along with the nonadiabatic dynamics simulations. The computational results show that the HQB molecule is relaxed to the S1-ENOL minimum after being excited to the Franck-Condon point in the S1 state. Subsequently, during the nonadiabatic deactivation process, the OH···N proton transfer and the twisting of benzimidazole occur before arriving at the single proton transfer conical intersection S1S0-KETO. Finally, the system can either return to the initial ground-state structure S0-ENOL or to the single proton transfer ground-state structure S0-KETO, both of which have almost the same probability. The dynamics simulations also show that no double proton transfer occurs. The excited-state lifetime of HQB is fitted to 1.1 ps, and only 64% of the dynamic trajectories return to the ground state within the 2.0 ps simulation time. We hope the detailed reaction mechanism of the HQB molecule will provide new insights into similar systems.

4.
J Cell Mol Med ; 28(4): e18130, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38332511

ABSTRACT

The dressing that promotes scarless healing is essential for both normal function and aesthetics after a wound. With a deeper understanding of the mechanisms involved in scar formation during the wound healing process, the ideal dressing becomes clearer and more promising. For instance, the yes-associated transcriptional regulator (YAP) has been extensively studied as a key gene involved in regulating scar formation. However, there has been limited attention given to pectolinarin, a natural flavonoid that may exhibit strong binding affinity to YAP, in the context of scarless healing. In this study, we successfully developed a temperature-sensitive Pluronic@F-127 hydrogel as a platform for delivering pectolinarin to promote scarless wound healing. The bioactive pectolinarin was released from the hydrogel, effectively enhancing endothelial cell migration, proliferation and the expression of angiogenesis-related genes. Additionally, a concentration of 20 µg/mL of pectolinarin demonstrated remarkable antioxidant ability, capable of counteracting the detrimental effects of reactive oxygen species (ROS). Our results from rat wound healing models demonstrated that the hydrogel accelerated wound healing, promoting re-epithelialization and facilitating skin appendage regeneration. Furthermore, we discovered that a concentration of 50 µg/mL of pectolinarin incorporated to the hydrogel exhibited the most favourable outcomes in terms of promoting wound healing and minimizing scar formation. Overall, our study highlights that the significant potential of locally released pectolinarin might substantially inhibit YAP and promoting scarless wound healing.


Subject(s)
Chromones , Cicatrix , Hydrogels , Rats , Animals , Cicatrix/pathology , Hydrogels/pharmacology , Temperature , Wound Healing
5.
Oral Health Prev Dent ; 22(1): 63-72, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38305424

ABSTRACT

PURPOSE: Previous surveys have reported that children with vitamin D deficiency were likely to suffer from early childhood caries (ECC). The aim of this systematic review and meta-analysis was to determine 1. whether the status of vitamin D is intrinsically related to the occurrence of ECC and 2. the optimal level of vitamin D for the prevention of ECC. MATERIALS AND METHODS: The database of PubMed, Web of Science, Cochrane, Embase and Google scholar were searched for targeted literature. The eligibility criteria were observational studies in which children with ECC were compared to children without ECC in terms of their vitamin D status. Applying the Newcastle-Ottawa tool, study selection, data extraction, and risk of bias assessment were performed by 2 reviewers independently. Meta-analysis was performed using the Cochrane Collaboration's Review Manager 5.4 software. RESULTS: 501 articles were retrieved from the electronic databases; 11 studies were finally included in systematic review, 10 studies of which were submitted to meta-analysis. The 25(OH)D levels in the ECC group were statistically significantly lower compared with that in the caries-free group (WMD = -13.96, 95% CI: [-19.88,-8.03], p < 0.001), especially in regard to the association between S-ECC and vitamin D (WMD = -18.64, 95% CI: [-20.06,-17.22], p < 0.001). The subgroup analyses in terms of geographical region demonstrated that children with a level of 25(OH)D of 50-75 nmol/l were more likely to have ECC than those with over 75 nmol/l (OR = 1.42, 95% CI: [1.26,1.60], p < 0.001), with data from Asia and Europe combined for analysis Conclusions: The level of vitamin D was lower in children with ECC than in caries-free children, and the correlation between S-ECC and vitamin D was even stronger. The optimal 25(OH)D level for preventing occurrence and development of ECC was ≥ 75 nmol/l. Thus, clinicians should view the development of early caries also from a systemic perspective.


Subject(s)
Dental Caries , Vitamin D , Child , Child, Preschool , Humans , Dental Caries Susceptibility , Dental Caries/epidemiology
6.
Adv Healthc Mater ; 13(2): e2302280, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37812035

ABSTRACT

Extracellular vesicles (EVs), lipid-enclosed nanosized membrane vesicles, are regarded as new vehicles and therapeutic agents in intercellular communication. During internal circulation, if EVs are not effectively taken up by recipient cells, they will be cleared as "cellular waste" and unable to deliver therapeutic components. It can be seen that cells uptake EVs are the prerequisite premise for sharing intercellular biological information. However, natural EVs have a low rate of absorption by their recipient cells, off-target delivery, and rapid clearance from circulation, which seriously reduces the utilization rate. Affecting the uptake rate of EVs through engineering technologies is essential for therapeutic applications. Engineering strategies for customizing EV uptake can potentially overcome these limitations and enable desirable therapeutic uses of EVs. In this review, the mechanism and influencing factors of natural EV uptake will be described in detail. Targeting each EV uptake mechanism, the strategies of engineered EVs and their application in diseases will be emphatically discussed. Finally, the future challenges and perspectives of engineered EVs are presented multidimensionally.


Subject(s)
Extracellular Vesicles , Cell Communication
7.
J Nanobiotechnology ; 21(1): 445, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001440

ABSTRACT

Tissue damage and aging lead to dysfunction, disfigurement, and trauma, posing significant global challenges. Creating a regenerative microenvironment to resist external stimuli and induce stem cell differentiation is essential. Plant-derived nanovesicles (PDNVs) are naturally bioactive lipid bilayer nanovesicles that contain proteins, lipids, ribonucleic acid, and metabolites. They have shown potential in promoting cell growth, migration, and differentiation into various types of tissues. With immunomodulatory, microbiota regulatory, antioxidant, and anti-aging bioactivities, PDNVs are valuable in resisting external stimuli and facilitating tissue repair. The unique structure of PDNVs provides an optimal platform for drug encapsulation, and surface modifications enhance their stability and specificity. Moreover, by employing synergistic administration strategies, PDNVs can maximize their therapeutic potential. This review summarized the progress and prospects of PDNVs as regenerative tools, provided insights into their selection for repair activities based on existing studies, considered the key challenge for clinical application, and anticipated their continued prominent role in the field of biomedicine.


Subject(s)
Cell Differentiation , Nanoparticles , Plants , Plants/chemistry , Lipid Bilayers
8.
Ann Med ; 55(2): 2282745, 2023.
Article in English | MEDLINE | ID: mdl-37988719

ABSTRACT

PURPOSE: To investigate the alterations in biometric parameters among Chinese adolescents over an extended period of wearing orthokeratology lenses, as well as the subsequent changes after a one-month cessation of lens usage prior to the secondary lens fitting. METHODS: Twenty-four myopic patients aged 7-14 were enrolled in this 37-month prospective observational study. Ocular biometric parameters were measured in the study. Ocular biometric parameters were assessed, and the utilization of Generalized Estimating Equations (GEE) was employed in the analysis to address the correlation between the two eyes of each participant. RESULTS: The axial length (AL) increased by 0.55 mm after 36 months of lens wearing and further increased to 0.62 mm at the 37-month follow-up compared to the initial measurement. The differences in AL elongation per month between the 37-month time point and the 12-, 24-, and 36-month marks of lens wearing were found to be statistically significant (p12-month = 0.001; p24-month = 0.003; p36-month = 0.001). Following the cessation of lens wear for 1 month, there was no significant complete recovery observed in the flat and steep keratometry values. However, the intraocular pressure and anterior chamber depth returned to their baseline levels. CONCLUSIONS: The AL elongation undergoes alterations during temporary discontinuation of lenses, with the flat and steep keratometry measurements remaining significantly flatter compared to the baseline. However, the intraocular pressure and anterior chamber depth return to their initial levels after one month of lens cessation.


Subject(s)
Axial Length, Eye , Myopia , Adolescent , Humans , Biometry , Cornea , Myopia/therapy , Prospective Studies , Child
9.
Phys Chem Chem Phys ; 25(44): 30679-30686, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37933753

ABSTRACT

Triazole compounds are important organic systems with excellent electronic properties, which have diagnostic potential in the fields of organic electronics and organic photovoltaics. The important photophysical nature of these systems is the transformation between the enol and keto forms after excited-state proton transfer. In this study, the IR vibrational spectrum, ESIPT mechanism, and excited-state decay dynamics of 2,2'-(1-phenyl-1H-1,2,4-triazole-3,5-diyl)diphenol (ExPh) were explored using electronic structure calculations and non-adiabatic dynamics simulations. Two S1/S0 conical intersections with distinct proton transfer (ESIPT-I and ESIPT-II) involved were obtained. The associated two-dimensional S1 minimum-energy potential energy surface indicated that the dynamical roles of these two S1/S0 conical intersections in the S1 excited-state decay were quite different. The ESIPT-I reaction was more favorable to occur than the ESIPT-II process. Our dynamics simulations supported this hypothesis with the whole trajectories decaying to the ground state via the S1S0-1 conical intersection, which involved the ESIPT-I process. The ESIPT-Involved efficient deactivation pathway could be partially responsible for the decrease in fluorescence emission. These results and ESIPT mechanisms are helpful for understanding the decay pathways of similar systems.

10.
Int J Nanomedicine ; 18: 4779-4804, 2023.
Article in English | MEDLINE | ID: mdl-37635909

ABSTRACT

Tumors are the second-most common disease in the world, killing people at an alarming rate. As issues with drug resistance, lack of targeting, and severe side effects are revealed, there is a growing demand for precision-targeted drug delivery systems. Plant-derived nanovesicles (PDNVs), which arecomposed of proteins, lipids, RNA, and metabolites, are widely distributed and readily accessible. The potential for anti-proliferative, pro-apoptotic, and drug-resistant-reversing effects on tumor cells, as well as the ability to alter the tumor microenvironment (TME) by modulating tumor-specific immune cells, make PDNVs promising anti-tumor therapeutics. With a lipid bilayer structure that allows drug loading and a transmembrane capacity readily endocytosed by cells, PDNVs are also expected to become a new drug delivery platform. Exogenous modifications of PDNVs enhance their circulating stability, tumor targeting ability, high cell endocytosis rate, and controlled-release capacity. In this review, we summarize PDNVs' natural antitumor activity, as well as engineered PDNVs as efficient precision-targeted drug delivery tools that enhance therapeutic effects. Additionally, we discuss critical considerations related to the issues raised in this area, which will encourage researchers to improve PDNVs as better anti-tumor therapeutics for clinic applications.


Subject(s)
Drug Delivery Systems , Drug-Related Side Effects and Adverse Reactions , Humans , Delayed-Action Preparations , Drug Liberation , Endocytosis
11.
Phys Chem Chem Phys ; 25(28): 19098-19105, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37427748

ABSTRACT

The small molecule built around the benzene ring, diacetyl phenylenediamine (DAPA), has attracted much attention due to its synthesis accessibility, large Stokes shift, etc. However, its meta structure m-DAPA does not fluoresce. In a previous investigation, it was found that such a property is due to the fact that it undergoes an energy-reasonable double proton transfer conical intersection during the deactivation of the S1 excited-state, then returns to the ground state by a nonradiative relaxation process eventually. However, our static electronic structure calculations and non-adiabatic dynamics analysis results indicate that only one reasonable non-adiabatic deactivation channel exists: after being excited to the S1 state, m-DAPA undergoes an ultrafast and barrierless ESIPT process and reaches the single-proton-transfer conical intersection. Subsequently, the system either returns to the keto-form S0 state minimum with proton reversion or returns to the single-proton-transfer S0 minimum after undergoing a slight twist of the acetyl group. The dynamics results show that the S1 excited-state lifetime of m-DAPA is 139 fs. In other words, we propose an efficient single-proton-transfer non-adiabatic deactivation channel of m-DAPA that is different from previous work, which can provide important mechanistic information of similar fluorescent materials.

12.
Front Microbiol ; 14: 1188722, 2023.
Article in English | MEDLINE | ID: mdl-37266020

ABSTRACT

Pitaya canker, caused by Neoscytalidium dimidiatum, is one of the most important fungal diseases that cause significant losses in production. To replace chemical pesticides, the use of biocontrol strains to manage plant diseases has been the focus of research. In this study, the bacterial strain AF01, identified as Paenibacillus polymyxa, exhibited significant antifungal effects against N. dimidiatum and four other pitaya fungal pathogens. The strain P. polymyxa AF01 produces 13 fusaricidins, which directly inhibit mycelial growth, spore germination and germ tube elongation by causing the membrane integrity and cell ultrastructure to incur irreversible damage. Pot experiment and yield test confirmed that AF01 provided preservative effects by reducing the disease index. In comparison to the untreated control groups, RNA-seq data showed that P. polymyxa AF01 selectively blocked some transcription and translation processes and inhibited RNA and DNA structural dynamics, energy production and conversion, and signal transduction, particularly cell wall biosynthesis, changes in membrane permeability, and impairment of protein biosynthesis. Thus, P. polymyxa AF01 could be potentially useful as a suitable biocontrol agent for pitaya canker.

13.
Front Psychiatry ; 14: 1209638, 2023.
Article in English | MEDLINE | ID: mdl-37333916

ABSTRACT

Objective: Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder caused by a complex interaction between genetic and environmental risk factors. The balance between antioxidant capacity and oxidative stress (OS) induced free radicals may be crucial during the pathophysiological development of ASD. Methods: In this study, 96 children with ASD who met the diagnostic and statistical manual of mental disorders were collected, and the number of children in the typical development (TD) group was matched by 1:1. Digital PCR (dPCR) for telomere length (TL) expression in ASD in peripheral blood leukocytes. Urine levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) content were measured by tandem triple quadrupole mass spectrometry and corrected by urinary creatinine levels. The levels of superoxide dismutase (SOD), catalase (CAT), and capacity (AOC) were detected by kits. Results: The TL of the ASD group was shorter than the TD group (p < 0.01) and had some accurate predictive significance for the identification of ASD (AUC = 0.632, 95% CI: 0.533-0.710, p = 0.002). Both 8-OHdG content and SOD activity in the ASD group were significantly higher than those in the TD group (p < 0.05). Shortened TL (Monofactor: 2.20 (1.22, 3.96), p = 0.009; Multifactor: 2.22 (1.22, 4.00), p = 0.008) and reduced CAT activity (Monofactor: 2.31 (1.28, 4.17), p = 0.006; Multifactor: 2.31 (1.28, 4.18), p = 0.006) are risk factors for the development of ASD, while reduced 8-OHdG content (Monofactor: 0.29 (0.14, 0.60), p = 0.001; Multifactor: 0.27 (0.13, 0.57), p = 0.001) and reduced SOD activity (Monofactor: 0.55 (0.31, 0.98), p = 0.042; Multifactor: 0.54 (0.30, 0.98), p = 0.042) are protective factors for the development of ASD. Conclusion: In this study, TL and OS were significantly different between the ASD group and the TD group. As guanine-rich telomere sequences were likely damaged by oxygen free radicals, creating OS, which is a factor in the incidence and progression of ASDs. In conclusion, oxidative damage occurs in the bodies of children with ASD, which may lead to sustained disease progression and severe clinical manifestations. We assume that timely supplementation of antioxidants is very likely to be a potential treatment for early intervention in children with ASD. Identification and detection of OS-related biomarkers may contribute to early diagnosis and timely interventions in young patients with ASD.

14.
J Nanobiotechnology ; 21(1): 200, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37344839

ABSTRACT

The emergence of human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses significant challenges to global public health. Despite the extensive efforts of researchers worldwide, there remains considerable opportunities for improvement in timely diagnosis, specific treatment, and effective vaccines for SARS-CoV-2. This is due, in part, to the large number of asymptomatic carriers, rapid virus mutations, inconsistent confinement policies, untimely diagnosis and limited clear treatment plans. The emerging of nanozymes offers a promising approach for combating SARS-CoV-2 due to their stable physicochemical properties and high surface areas, which enable easier and multiple nano-bio interactions in vivo. Nanozymes inspire the development of sensitive and economic nanosensors for rapid detection, facilitate the development of specific medicines with minimal side effects for targeted therapy, trigger defensive mechanisms in the form of vaccines, and eliminate SARS-CoV-2 in the environment for prevention. In this review, we briefly present the limitations of existing countermeasures against coronavirus disease 2019 (COVID-19). We then reviewed the applications of nanozyme-based platforms in the fields of diagnostics, therapeutics and the prevention in COVID-19. Finally, we propose opportunities and challenges for the further development of nanozyme-based platforms for COVID-19. We expect that our review will provide valuable insights into the new emerging and re-emerging infectious pandemic from the perspective of nanozymes.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19/diagnosis , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Pandemics/prevention & control , COVID-19 Testing
15.
Ophthalmol Ther ; 12(4): 2117-2131, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37233976

ABSTRACT

INTRODUCTION: This study aimed to describe the distribution and characteristics of ocular biometric parameters among a large Chinese population. METHODS: This retrospective cross-sectional study included 146,748 subjects whose ocular biometric parameters were measured at the ophthalmology clinic of West China Hospital, Sichuan University, and recorded in the hospital database. Ocular biometric parameters, including axial length, anterior chamber depth, corneal keratometry, and keratometric astigmatism, were recorded. Only monocular data for each subject were analyzed to avoid bias. RESULTS: Valid data from 85,770 subjects (43,552 females and 42,218 males) aged 3-114 years were included in this study. The mean axial length, mean anterior chamber depth, average corneal keratometry, and mean keratometric astigmatism were 24.61 mm, 3.30 mm, 43.76 D, and 1.19 D, respectively. The stratification of the ocular parameters by age and gender showed significant inter-gender and inter-age differences. CONCLUSIONS: Analysis of a large population of subjects in western China aged 3-114 years showed that the distribution and characteristics of ocular biometric parameters, including axial length, anterior chamber depth, corneal keratometry, and keratometric astigmatism, differed by age and gender. This study is the first to describe ocular biometric parameters in subjects aged > 100 years.

16.
Plant Dis ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37018208

ABSTRACT

Walnut (Juglans regia) is a deciduous tree of the Juglandaceae family, widely cultivated in China, and provides value in a variety of ways, including the usage of the wood and nuts, and offers substantial economic, social, and environmental advantages (Wang et al, 2017). Nevertheless, a fungal disease of causing walnut trunk rot was observed in approximately 30% of 50 counted ten-year-old J. regia in Chongzhou City (30°33'34″N, 103°38'35″E, 513 m), Sichuan Province, China, and this disease has greatly delete healthy growth of walnut. The infected bark exhibited purple necrotic lesions, and the sick parts were surrounded by water-soaked plaques. From 10 trunks of the 10 diseased trees, 20 isolated fungal colonies were the same. The ascospores placed in 60 mm plates were almost entirely covered with mycelium within 8 days, colonies on the PDA changed from initial pale to white, ad then turned yellowish to light orange or rosy to yellow-brown (25℃, 90% relative humidity, 12-h photoperiod). On the host, Ectostromata were immersed to erumpent, globose to subglobose, purple and brown, and measured 0.6 - 4.5 × 0.3 - 2.8 mm (x̄ = 2.6 × 1.6 mm, n = 40); Ascomata were flask-shaped to subglobose, dark brown, and measured 0.1 - 0.6 × 0.1 - 0.4 mm (x̄ = 0.35 × 0.25 mm, n = 40); Asci were numerous, cylindrical to subclavate, contained 8 uniseriate ascospores, and measured 80 - 150 × 10 - 20 µm (x̄ = 115 × 15 µm, n = 40), and Ascospores were ellipsoid, 2-celled, dark brown to black, plump or attenuated towards, apices with 1 large drop per cell, and measured 14 - 20 × 6.5 - 9 µm (x̄ = 17 × 7.8 µm, n = 40). These morphological characteristics are consistent with the species Myrmaecium fulvopruinatum (Berk.) Jaklitsch & Voglmayr (Jaklitsch et al. 2015). The genomic DNA of a representative isolate SICAUCC 22-0148 was extracted. The ITS, LSU region, tef1-α, rpb2 genes region were amplified using the primer pairs ITS1/ITS4 primers (White et al. 1990), LR0R/LR5 (Moncalvo et al. 1995), EF1-688F/986R (Alves et al. 2008), fRPB2-5f/fRPB2-7cr (Liu et al. 1999), respectively. The sequences were deposited in NCBI with accession numbers ON287043 (ITS), ON287044 (LSU), ON315870 (tef1-α), and ON315871 (rpb2), rspectively, which showed 99.8, 99.8, 98.1, and 98.5% identities with M. fulvopruinatum CBS 139057 holotype (accession numbers KP687858, KP687858, KP688027, and KP687933 respectively). Based on the analyses of phylogenies and morphologies, the isolates were identified as M. fulvopruinatum. The pathogenicity of SICAUCC 22-0148 was tested by inoculating surface-sterilized trunk wounds of four-year-old trees of J. regia with a mycelial plug (Desai et al. 2019). Sterile PDA plugs were used as controls. Wounds were covered with a film, to ensure humidity and prevent contamination. Each inoculation was repeated twice and included two plants, control and inoculated. A month later, the symptoms observed on inoculated trunks were similar to those in the wild, and M. fulvopruinatum was re-isolated from the inoculated trunk, confirming Koch's postulates. Previous research has reported M. fulvopruinatum as an important fungal species that cause canker delete symptoms on Chinese sweet chestnut in China (Jiang et al. 2018). We carried the taxonomy work of the fungi that caused trunk rot on walnut, and this is the first time that M. fulvopruinatum has been linked to walnut trunk rot on J. regia. Trunk rot of walnut will not only cause weakening of trees, but also affect the yield and quality of walnuts, bringing huge economic losses. This study was supported by the Sichuan Science and Technology Program under Grant 2022NSFSC1011. References: Alves, A., et al. 2008. Fungal Diversity 28:1-13. Desai, D.D., et al. 2019. International Journal of Economic Plants 6:147-149. Jaklitsch., W.M., et al. 2015. Fungal Diversity 73(1):159-202. Jiang, N., et al. 2018. Mycosphere 9(6):1268-1289. Liu, Y.L., et al. 1999. Mol Biol Evol 16:1799-1808. Moncalvo, J.M., et al. 1995. Mycologia 87:223-238. Wang, Q.H., et al. 2017. Australasian Plant Pathology 46:585-595. White, T.J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA.

17.
Front Med (Lausanne) ; 10: 1086756, 2023.
Article in English | MEDLINE | ID: mdl-36968823

ABSTRACT

Alport syndrome (AS) is an inherited glomerular basement membrane (GBM) disease leading to end-stage renal disease (ESRD). X-linked AS (XLAS) is caused by pathogenic variants in the COL4A5 gene. Many pathogenic variants causing AS have been detected, but the genetic modifications and pathological alterations leading to ESRD have not been fully characterized. In this study, a novel frameshift variant c.980_983del ATGG in the exon 17 of the COL4A5 gene detected in a patient with XLAS was introduced into a mouse model in by CRISPR/Cas9 system. Through biochemical urinalysis, histopathology, immunofluorescence, and transmission electron microscopy (TEM) detection, the clinical manifestations and pathological alterations of Del-ATGG mice were characterized. From 16 weeks of age, obvious proteinuria was observed and TEM showed typical alterations of XLAS. The pathological changes included glomerular atrophy, increased monocytes in renal interstitial, and the absence of type IV collagen α5. The expression of Col4a5 was significantly decreased in Del-ATGG mouse model. Transcriptomic analysis showed that differentially expressed genes (DEGs) accounted for 17.45% (4,188/24003) of all genes. GO terms indicated that the functions of identified DEGs were associated with cell adhesion, migration, and proliferation, while KEGG terms found enhanced the degradation of ECM, amino acid metabolism, helper T-cell differentiation, various receptor interactions, and several important pathways such as chemokine signaling pathway, NF-kappa B signaling pathway, JAK-STAT signaling pathway. In conclusion, a mouse model with a frameshift variant in the Col4a5 gene has been generated to demonstrate the biochemical, histological, and pathogenic alterations related to AS. Further gene expression profiling and transcriptomic analysis revealed DEGs and enriched pathways potentially related to the disease progression of AS. This Del-ATGG mouse model could be used to further define the genetic modifiers and potential therapeutic targets for XLAS treatment.

18.
Plants (Basel) ; 12(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36679029

ABSTRACT

Sugarcane smut is the most severe sugarcane disease in China. The typical symptom is the emerging of a long, black whip from the top of the plant cane. However, in 2018, for the first time we observed the floral structures of sugarcane infected by smut fungus in the planting fields of China. Such smut-associated inflorescence in sugarcane was generally curved and short, with small black whips emerging from glumes of a single floret on the cane stalk. Compatible haploid strains, named Ssf1-7 (MAT-1) and Ssf1-8 (MAT-2), isolated from teliospores that formed black whips in inflorescence of sugarcane were selected for sexual mating assay, ITS DNA sequencing analysis and pathogenicity assessment. The isolates Ssf1-7 and Ssf1-8 showed stronger sexual mating capability than the reported Sporisorium scitamineum strains Ss17 and Ss18. The ITS DNA sequence of the isolates Ssf1-7 and Ssf1-8 reached 100% similarity to the isolates of S. scitamineum strains available in GenBank. Inoculating Ssf1-7 + Ssf1-8 to six sugarcane varieties, i.e., GT42, GT44, GT49, GT55, LC05-136 and ROC22, resulted in different smut morphological modifications. The symptoms of floral structure only occurred in LC05-136, indicating that the flowering induction by S. scitamineum is variety-specific. Furthermore, six selected flowering-related genes were found to be differentially expressed in infected Ssf1-7 + Ssf1-8 LC05-13 plantlets compared to uninfected ones. It is concluded that the flowering induction by S. scitamineum depends on specific fungal race and sugarcane variety, suggesting a specific pathogen-host interaction and expression of some flowering-related genes.

19.
J Extracell Vesicles ; 11(12): e12288, 2022 12.
Article in English | MEDLINE | ID: mdl-36450704

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has wrought havoc on the world economy and people's daily lives. The inability to comprehensively control COVID-19 is due to the difficulty of early and timely diagnosis, the lack of effective therapeutic drugs, and the limited effectiveness of vaccines. The body contains billions of extracellular vesicles (EVs), which have shown remarkable potential in disease diagnosis, drug development, and vaccine carriers. Recently, increasing evidence has indicated that EVs may participate or assist the body in defence, antagonism, recovery and acquired immunity against SARS-CoV-2. On the one hand, intercepting and decrypting the general intelligence carried in circulating EVs from COVID-19 patients will provide an important hint for diagnosis and treatment; on the other hand, engineered EVs modified by gene editing in the laboratory will amplify the effectiveness of inhibiting infection, replication and destruction of ever-mutating SARS-CoV-2, facilitating tissue repair and making a better vaccine. To comprehensively understand the interaction between EVs and SARS-CoV-2, providing new insights to overcome some difficulties in the diagnosis, prevention and treatment of COVID-19, we conducted a rounded review in this area. We also explain numerous critical challenges that these tactics face before they enter the clinic, and this work will provide previous 'meet change with constancy' lessons for responding to future similar public health disasters. Extracellular vesicles (EVs) provide a 'meet changes with constancy' strategy to combat SARS-CoV-2 that spans defence, antagonism, recovery, and acquired immunity. Targets for COVID-19 diagnosis, therapy, and prevention of progression may be found by capture of the message decoding in circulating EVs. Engineered and biomimetic EVs can boost effects of the natural EVs, especially anti-SARS-CoV-2, targeted repair of damaged tissue, and improvement of vaccine efficacy.


Subject(s)
COVID-19 , Extracellular Vesicles , Humans , SARS-CoV-2 , COVID-19/therapy , COVID-19 Testing , Adaptive Immunity
20.
Front Immunol ; 13: 1030222, 2022.
Article in English | MEDLINE | ID: mdl-36389736

ABSTRACT

The prognosis of human papillomavirus (HPV)-infected head and neck squamous cell carcinoma (HNSCC) is often better than that of HPV- cancer, which is possibly caused by the differences in their immune microenvironments. The contribution of macrophage, as a principal innate immune cell, to this phenomenon is still unclear. In this study, a single-cell atlas of 4,388 high-quality macrophages from 18 HPV- and 8 HPV+ HNSCC patients was constructed with single-cell RNA sequencing data. Eight macrophage subsets were identified from HNSCC, whereas their functional properties and developmental trajectory were delineated based on HPV status. Our results demonstrated that macrophages in HPV+ HNSCC exhibit stronger phagocytic ability, although the infiltration rate of macrophages decreased. From the results, a unique macrophage subset with TCR and CD3-specific signatures was identified from HPV-related HNSCC. These TCR+ macrophages potentially participate in the regulation of the TCR signaling pathway and phagocytosis. In conclusion, our results suggested that HPV could affect the infiltration rate, function, and differentiation of macrophages in HNSCC, whereas TCR+ macrophages play a critical role in the HNSCC microenvironment. These results provide new insights into the immune microenvironment of HNSCC and offer a valuable resource for the understanding of the immune landscape of HPV-related HNSCC, which will in turn help the development of immunotherapy strategies for the disease.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck , Head and Neck Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Macrophages , Sequence Analysis, RNA , Receptors, Antigen, T-Cell/genetics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL